扫书网

手机浏览器扫描二维码访问

第三百五十章 搞定毕业论文(第2页)

对于Bertrand假设,他准备使用反证法。

这是除了直接推导证明法之外最常用的证明方法,面对许多猜想时非常重要。

尤其是……在证明某个猜想不成立时!

但程诺现在当时不是要寻找反例,证明Bertrand假设不成立。

切尔雪夫已然证明这一假设的成立,使用反证法,无非是将证明步骤进行简化。

程诺自信满满。

第一步,用反证法,假设命题不成立,即存在某个n≥2,在n与2n之间没有素数。

第二步,将(2n)!(n!n!)的分解(2n)!(n!n!)=Πps(p)(s(p)为质因子p的幂次。

第三步,由推论5知p<2n,由反证法假设知p≤n,再由推论3知p≤2n3,因此(2n)!(n!n!)=Πp≤2n3ps(p)。

………………

第七步,利用推论8可得:(2n)!(n!n!)≤Πp≤√2nps(p)·Π√2n<p≤2n3p≤Πp≤√2nps(p)·Πp≤2n3p!

思路畅通,程诺一路写下来,不见任何阻力,一个小时左右便完成一半多的证明步骤。

连程诺本人,都惊讶了好一阵。

原来我现在,不知不觉间已经这么厉害了啊!!!

程诺叉腰得意一会儿。

随后,便是低头继续苦逼的列着证明公式。

第八步,由于乘积中的第一组的被乘因子数目为√2n以内的素数数目,即不多于√2n2-1(因偶数及1不是素数)……由此得到:(2n)!(n!n!)<(2n)√2n2-1·42n3。

第九步,(2n)!(n!n!)是(1+1)2n展开式中最大的一项,而该展开式共有2n项(我们将首末两项1合并为2),因此(2n)!(n!n!)≥22n2n=4n2n。两端取对数并进一步化简可得:√2nln4<3ln(2n)。

下面,就是最后一步。

由于幂函数√2n随n的增长速度远快于对数函数ln(2n),因此上式对于足够大的n显然不可能成立。

至此,可说明,Bertrand假设成立。

论文的草稿部分,算是正式完工。

而且完工的时间,比程诺预想的要早了整整一半时间。

这样的话,还能趁热的将毕业论文的文档版给搞出来。

搞!搞!搞!

啪啪啪~~

程诺手指敲击着键盘,四个多小时后,毕业论文正式完稿。

程诺又随手做了一份PPT,毕业答辩时会用到。

至于答辩的腹稿,程诺并没有准备这个东西。

反正到时候兵来将挡,水来土掩就是。

要是以哥的水平,连一个毕业答辩都过不了,那还不如直接找块豆腐撞死算了。

哦,对了,还有一件事。

程诺一拍脑袋,仿佛记起了什么。

在网上搜索一阵,程诺将论文转换为英文的PDF格式,打包投给了位于德古国的一家学术期刊:《数学通讯符号》。

SCI期刊之一,位列一区。

影响因子5。21,即便在一区的诸多著名学术杂志中,都属于中等偏上的水平。

……………………

PS:《爱情公寓》,哎~~

热门小说推荐
唐枭

唐枭

枭者,勇而强也!枭者,首领也!武唐年间,天下大乱,酷吏当道,律法崩散,牝鸡司晨!主角岳峰,生而为枭,家国天下,我大唐男儿当自强...

医妃惊世

医妃惊世

她本是实力强悍,医术超群的世家家主。  一朝穿越成将军府的废柴嫡小姐,成为第一位被退婚的太子妃,人人嘲讽!  选秀宴上,她被赐嫁给鼎鼎有名的残废王爷。  ...

我真不是学神

我真不是学神

苏恒重生平行世界,却发现这是大明650年,崇祯大帝是人类第一位灾变境强者,只身渡星宇,单手灭星球,无数高中大学,教导的是人体修炼进化学说,精英大学生飞天遁地翻云布雨。叮,超级学神系统正式开启...

太古神王

太古神王

九天大陆,天穹之上有九条星河,亿万星辰,皆为武命星辰,武道之人,可沟通星辰,觉醒星魂,成武命修士。传说,九天大陆最为厉害的武修,每突破一个境界,便能开辟一...

霸道帝少请节制

霸道帝少请节制

言安希醉酒后睡了一个男人,留下一百零二块钱,然后逃之夭夭。什么?这个男人,竟然是她未婚夫的大哥?一场豪赌,她被作为赌注,未婚夫将她拱手输给大哥。慕迟曜是这...

凰妻倾世

凰妻倾世

宁芝作为大晋朝第一奸臣世家嫡女,风光无限。无他,便是这半壁江山都要仰仗宁家,纵然是皇家最尊贵任性的二皇子裴珩,也只能忍着。  宁芝笑着二殿下,不如你我豪赌一场如何?输了,我嫁给你。若是赢了么,不仅是我主天下,连二殿下的人,心,也都一并是我宁芝的,如何?  裴珩嗤之以鼻,一个小女子也敢要帝位么?就陪她赌一场又如何?他还能输了不成?总要叫她知道厉害!...