手机浏览器扫描二维码访问
350章
另一边,华国。
经过一夜的思考,困惑程诺终于对自己的毕业论文有了新的思路。
关于两个引理的运用,程诺有他自己独到的见解。
所以,这天白天的课一结束,程诺便匆匆赶到图书馆,随便挑了一个没人的位置,拿出纸笔,验证自己的想法。
既然将两个引理强加进Bertrand假设的证明过程中这个方向行不通,那程诺想的是,能否根据这两个引理,得出几个推论,然后再应用到Bertrand假设中。
这样的话,虽然拐了个弯,看似比切比雪夫的方法还要麻烦不少。但在真正的结果出来之前,谁也不敢百分百就这样说。
程诺觉得还是应该尝试一下。
工具早已备好,他沉吟了一阵,开始在草稿纸上做各种尝试。
他有不是上帝,并不能很明确的知晓通过引理得出来的推论究竟哪个有用,哪个没用。最稳妥的方法,就是一一尝试。
反正时间足够,程诺并不着急。
唰唰唰~~
低着头,他列下一行行算式。
【设m为满足pm≤2n的最大自然数,则显然对于i>m,floor(2npi)-2floor(npi)=0-0=0,求和止于i=m,共计m项。由于floor(2x)-2floor(x)≤1,因此这m项中的每一项不是0就是1……】
由上,得推论1:【设n为一自然数,p为一素数,则能整除(2n)!(n!n!)的p的最高幂次为:s=Σi≥1[floor(2npi)-2floor(npi)]。】
【因为n≥3及2n3<p≤n表明p2>2n,求和只有i=1一项,即:s=floor(2np)-2floor(np)。由于2n3<p≤n还表明1≤np<32,因此s=floor(2np)-2floor(np)=2-2=0。】
由此,得推论2:【设n≥3为一自然数,p为一素数,s为能整除(2n)!(n!n!)的p的最高幂次,则:(a)ps≤2n;(b)若p>√2n,则s≤1;(c)若2n3<p≤n,则s=0。】
一行行,一列列。
除了上课,程诺一整天都泡在图书馆里。
等到晚上十点闭馆的时候,程诺才背着书包依依不舍的离开。
而在他手中拿着的草稿纸上,已经密密麻麻的列着十几个推论。
这是他劳动一天的成果。
明天程诺的工作,就是从这十几个推论中,寻找出对Bertrand假设证明工作有用的推论。
…………
一夜无话。
翌日,又是阳光明媚,春暖花开的一天。
日期是三月初,方教授给程诺的一个月假期还剩十多天的时间。
程诺又足够的时间去浪……哦,不,是去完善他的毕业论文。
论文的进度按照程诺规划的方案进行,这一天,他从推导出的十几个推论中寻找出证明Bertrand假设有重要作用的五个推论。
结束了这忙碌的一天,第二天,程诺便马不停蹄的开始正式Bertrand假设的证明。
这可不是个轻松的工作。
程诺没有多大把握能一天的时间搞定。
可一句古话说的好,一鼓作气,再而衰,三而竭。如今势头正足,最好一天拿下。
这个时候,程诺不得不再次准备开启修仙大法。
而修仙神器,“肾宝”,程诺也早已准备完毕。
肝吧,少年!
程诺右手碳素笔,左手肾宝,开始攻克最后一道难关。
切尔雪夫在证明Bertrand假设时,采取的方案是直接进行已知定理进行硬性推导,丝毫没有任何技巧性可言。
程诺当然不能这么做。
一念之间,沧海桑田。打眼带你进入古玩的世界!!!...
他是武林中最年轻的武学宗师,拥有神秘的绝对手感,可他现在却是一名普通的中医大学的大一新生,本想低调的学学医,看看病,恋恋爱,可在一次中秋晚会被迫表演中震惊了全场,注定闪耀的美好大学生活从此开始了...
笑尽天下英雄,宇内我为君主!万水千山,以我为尊八荒六合,唯我称雄!我欲舞风云,凌天下,踏天域,登苍穹!谁可争锋?!诸君可愿陪我,并肩凌天下,琼霄风云舞,...
由终点回到原点,洪涛又回到了他第一次重生前的时代,不过失去了三次重生穿越的所有记忆。假如没有重生过,没有记忆的金手指,他会是一个什么样子呢?在波澜壮阔的改革开放高潮期,他是屹立在潮头的弄潮儿?还是被浪潮拍碎的浪花?他的记忆还能不能回来?江竹意还会不会伴着他这一生?金月在这一世里和他又有什么交集?小舅舅还会是那个妻管...
十方地狱禁不了我魂,浩瀚星空亮不过我眼,无垠大地载不起我脚,诸天神魔承不住我怒!我要这天地匍匐,我要这轮回断灭!...
九天大陆,天穹之上有九条星河,亿万星辰,皆为武命星辰,武道之人,可沟通星辰,觉醒星魂,成武命修士。传说,九天大陆最为厉害的武修,每突破一个境界,便能开辟一...