手机浏览器扫描二维码访问
《一类线性随机微分方程的解法》?
程诺点开王根基发过来的文件,细心研读起来。
一类线性随机方程的解法,在数学系大一的课程里的就已经学过。
如果程诺记得不错的话,对于微分方程,应该是使用常数变易法进行求解。
这是一用最为常用,也是公认为相对简便的微分方程求解方法。
常数变易法,简单来说,先是求微分方程对应的齐次微分方程的解,再常数变易得到方程的显示解。
例如,随机微分方程d£=F(t)£dt+C(t)dB,首先将方程改写为d£-F(l)£dl=C(t)dB,它对应的齐次线性随机微分方程为……再仿照常微分方程中的恰当因子方法,……最终得到,£=……(“”ω“”)(●′-●)。
(特么的实在是打不出来!)
重点来了!
王根基的这篇论文,在常数变易法之外,提出了另一种一类线性随机方程的解法。
另一种比我们一直都在用的常数变易法更简便的解法。
可以说,如果这个解法真的被证实真实可用的话,那绝对会在微分领域产生一个小规模的震动。
别说SCI的数学2区期刊,就算是数学1区的顶级期刊,都绝对会重视王根基的这片论文。
不过,可惜。
期刊的审稿编辑点出王根基的论文存在重大逻辑错误。
他那个解法是否真的能实用,还在两可之间。
程诺拖着鼠标,继续往下看。
王根基提出的那个简便的求解方法是这样:
第一步,得到伪齐次微分方程的解。
第二步,变易伪齐次微分方程解的常数。
第三部,带到原方程中验证求解。
从表面上看,确实比常数变易法要简单。
后面的论文内容,是王根基通过公式来论证这个解法的可行性。
程诺大致上扫了一眼。
总的来说,王根基的这篇论文的思路很清晰。
从提出猜想,到证明猜想,再到说明这个解法相比于常数变易法所具有的优点。
但是……
简单的从头到尾扫了一遍下来,程诺也终于明白王根基的这篇论文为什么会被SCI的期刊打回来大修了。
心潮澎湃,无限幻想,迎风挥击千层浪,少年不败热血!...
郁棠前世家破人亡,今生只想帮着大堂兄振兴家业。 裴宴(冷眼睨视)无事献殷勤,非奸即盗!这小姑娘的总在我面前晃来晃去的,难道是觊觎裴家宗妇的位置? 郁...
本书旨在打造第一刁民!...
无意中获得了一枚运气骰子,还穿越到娱乐业匮乏的平行位面,王昊这下牛逼了。运气骰子的六个面分别是非常倒霉,倒霉,普通,好运,非常好运,神级好运,每天零点刷新!不知道今天会是什么运气,求给力啊!零点钟声响...
伴随着魂导科技的进步,斗罗大陆上的人类征服了海洋,又发现了两块大陆。魂兽也随着人类魂师的猎杀走向灭亡,沉睡无数年的魂兽之王在星斗大森林最后的净土苏醒,它要...
音乐影视绘画书法雕塑文学你都懂?略知一二。都会一点的意思?嗯,都会亿点的意思。怀揣系统,靠艺术征服世界,成为各界人士顶礼膜拜的无冕之王。...